Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Volcano seismicity is often detected and classified based on its spectral properties. However, the wide variety of volcano seismic signals and increasing amounts of data make accurate, consistent, and efficient detection and classification challenging. Machine learning (ML) has proven very effective at detecting and classifying tectonic seismicity, particularly using Convolutional Neural Networks (CNNs) and leveraging labeled datasets from regional seismic networks. Progress has been made applying ML to volcano seismicity, but efforts have typically been focused on a single volcano and are often hampered by the limited availability of training data. We build on the method of Tan et al. [2024] (10.1029/2024JB029194) to generalize a spectrogram-based CNN termed the VOlcano Infrasound and Seismic Spectrogram Neural Network (VOISS-Net) to detect and classify volcano seismicity at any volcano. We use a diverse training dataset of over 270,000 spectrograms from multiple volcanoes: Pavlof, Semisopochnoi, Tanaga, Takawangha, and Redoubt volcanoes\replaced (Alaska, USA); Mt. Etna (Italy); and Kīlauea, Hawai`i (USA). These volcanoes present a wide range of volcano seismic signals, source-receiver distances, and eruption styles. Our generalized VOISS-Net model achieves an accuracy of 87 % on the test set. We apply this model to continuous data from several volcanoes and eruptions included within and outside our training set, and find that multiple types of tremor, explosions, earthquakes, long-period events, and noise are successfully detected and classified. The model occasionally confuses transient signals such as earthquakes and explosions and misclassifies seismicity not included in the training dataset (e.g. teleseismic earthquakes). We envision the generalized VOISS-Net model to be applicable in both research and operational volcano monitoring settings.more » « lessFree, publicly-accessible full text available January 22, 2026
- 
            An increase in volcanic thermal emissions can indicate subsurface and surface processes that precede, or coincide with, volcanic eruptions. Space-borne infrared sensors can detect hotspots—defined here as localized volcanic thermal emissions—in near-real-time. However, automatic hotspot detection systems are needed to efficiently analyze the large quantities of data produced. While hotspots have been automatically detected for over 20 years with simple thresholding algorithms, new computer vision technologies, such as convolutional neural networks (CNNs), can enable improved detection capabilities. Here we introduce HotLINK: the Hotspot Learning and Identification Network, a CNN trained to detect hotspots with a dataset of −3,800 satellite-based, Visible Infrared Imaging Radiometer Suite (VIIRS) images from Mount Veniaminof and Mount Cleveland volcanoes, Alaska. We find that our model achieves an accuracy of 96% (F1-score 0.92) when evaluated on −1,700 unseen images from the same volcanoes, and 95% (F1-score 0.67) when evaluated on −3,000 images from six additional Alaska volcanoes (Augustine Volcano, Bogoslof Island, Okmok Caldera, Pavlof Volcano, Redoubt Volcano, Shishaldin Volcano). In comparison with an existing threshold-based hotspot detection algorithm, MIROVA (Coppola et al., Geological Society, London, Special Publications, 2016, 426, 181–205), our model detects 22% more hotspots and produces 12% fewer false positives. Additional testing on −700 labeled Moderate Resolution Imaging Spectroradiometer (MODIS) images from Mount Veniaminof demonstrates that our model is applicable to this sensor’s data as well, achieving an accuracy of 98% (F1-score 0.95). We apply HotLINK to 10 years of VIIRS data and 22 years of MODIS data for the eight aforementioned Alaska volcanoes and calculate the radiative power of detected hotspots. From these time series we find that HotLINK accurately characterizes background and eruptive periods, similar to MIROVA, but also detects more subtle warming signals, potentially related to volcanic unrest. We identify three advantages to our model over its predecessors: 1) the ability to detect more subtle volcanic hotspots and produce fewer false positives, especially in daytime images; 2) probabilistic predictions provide a measure of detection confidence; and 3) its transferability, i.e., the successful application to multiple sensors and multiple volcanoes without the need for threshold tuning, suggesting the potential for global application.more » « less
- 
            Volcanic earthquake catalogs are an essential data product used to interpret subsurface volcanic activity and forecast eruptions. Advances in detection techniques (e.g., matched-filtering, machine learning) and relative relocation tools have improved catalog completeness and refined event locations. However, most volcano observatories have yet to incorporate these techniques into their catalog-building workflows. This is due in part to complexities in operationalizing, automating, and calibrating these techniques in a satisfactory way for disparate volcano networks and their varied seismicity. In an effort to streamline the integration of catalog-enhancing tools at the Alaska Volcano Observatory (AVO), we have integrated four popular open-source tools: REDPy, EQcorrscan, HypoDD, and GrowClust. The combination of these tools offers the capability of adding seismic event detections and relocating events in a single workflow. The workflow relies on a combination of standard triggering and cross-correlation clustering (REDPy) to consolidate representative templates used in matched-filtering (EQcorrscan). The templates and their detections are then relocated using the differential time methods provided by HypoDD and/or GrowClust. Our workflow also provides codes to incorporate campaign data at appropriate junctures, and calculate magnitude and frequency index for valid events. We apply this workflow to three datasets: the 2012–2013 seismic swarm sequence at Mammoth Mountain (California), the 2009 eruption of Redoubt Volcano (Alaska), and the 2006 eruption of Augustine Volcano (Alaska); and compare our results with previous studies at each volcano. In general, our workflow provides a significant increase in the number of events and improved locations, and we relate the event clusters and temporal progressions to relevant volcanic activity. We also discuss workflow implementation best practices, particularly in applying these tools to sparse volcano seismic networks. We envision that our workflow and the datasets presented here will be useful for detailed volcano analyses in monitoring and research efforts.more » « less
- 
            Abstract Volcanic tremor is a semi‐continuous seismic and/or acoustic signal that occurs at time scales ranging from seconds to years, with variable amplitudes and spectral features. Tremor sources have often been related to fluid movement and degassing processes, and are recognized as a potential geophysical precursor and co‐eruptive geophysical signal. Eruption forecasting and monitoring efforts need a fast, robust method to automatically detect, characterize, and catalog volcanic tremor. Here we develop VOlcano Infrasound and Seismic Spectrogram Network (VOISS‐Net), a pair of convolutional neural networks (one for seismic, one for acoustic) that can detect tremor in near real‐time and classify it according to its spectral signature. Specifically, we construct an extensive data set of labeled seismic and low‐frequency acoustic (infrasound) spectrograms from the 2021–2022 eruption of Pavlof Volcano, Alaska, and use it to train VOISS‐Net to differentiate between different tremor types, explosions, earthquakes and noise. We use VOISS‐Net to classify continuous data from past Pavlof Volcano eruptions (2007, 2013, 2014, 2016, and 2021–2022). VOISS‐Net achieves an 81.2% and 90.0% accuracy on the seismic and infrasound test sets respectively, and successfully characterizes tremor sequences for each eruption. By comparing the derived seismoacoustic timelines of each eruption with the corresponding eruption chronologies compiled by the Alaska Volcano Observatory, our model identifies changes in tremor regimes that coincide with observed volcanic activity. VOISS‐Net can aid tremor‐related monitoring and research by making consistent tremor catalogs more accessible.more » « less
- 
            null (Ed.)Steamboat Geyser in Yellowstone National Park’s Norris Geyser Basin began a prolific sequence of eruptions in March 2018 after 34 y of sporadic activity. We analyze a wide range of datasets to explore triggering mechanisms for Steamboat’s reactivation and controls on eruption intervals and height. Prior to Steamboat’s renewed activity, Norris Geyser Basin experienced uplift, a slight increase in radiant temperature, and increased regional seismicity, which may indicate that magmatic processes promoted reactivation. However, because the geothermal reservoir temperature did not change, no other dormant geysers became active, and previous periods with greater seismic moment release did not reawaken Steamboat, the reason for reactivation remains ambiguous. Eruption intervals since 2018 (3.16 to 35.45 d) modulate seasonally, with shorter intervals in the summer. Abnormally long intervals coincide with weakening of a shallow seismic source in the geyser basin’s hydrothermal system. We find no relation between interval and erupted volume, implying unsteady heat and mass discharge. Finally, using data from geysers worldwide, we find a correlation between eruption height and inferred depth to the shallow reservoir supplying water to eruptions. Steamboat is taller because water is stored deeper there than at other geysers, and, hence, more energy is available to power the eruptions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
